Advance Search
Volume 34 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Li JT, and Song XD (2021). Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method. Earthq Sci 34(3): 199–210, doi: 10.29382/eqs-2021-0002
Citation: Li JT, and Song XD (2021). Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method. Earthq Sci 34(3): 199–210, doi: 10.29382/eqs-2021-0002

Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method

doi: 10.29382/eqs-2021-0002
More Information
  • The Hi-CLIMB seismic array is located in the central-western Tibetan Plateau. The H-κ-c method (Li JT et al., 2019) was applied to receiver function data on the Hi-CLIMB, which corrects the back-azimuthal variations in the arrival times of Ps and crustal multiples caused by crustal anisotropy and dipping interfaces before performing H-κ stacking. Compared to the traditional H-κ method, the H-κ stacking results after harmonic corrections showed considerable improvements, including greatly reduced errors, significantly less scattered H (crustal thickness) and κ (crustal vP/vS ratio) values, and clearer patterns of H and κ in different Tibetan blocks. This demonstrates that the H-κ-c method works well even for regions with complex crustal structures, such as the Tibetan Plateau, when there are helpful references from nearby stations or other constraints. The variation in crustal thickness agrees with previous studies but tends to be relatively shallower beneath most of the plateau. Two regions with particularly high crustal vP/vS were observed, namely, one in the northern Himalaya block and beneath the Yarlung-Zangbo suture, and the other in the Qiangtang block. Their correlation with mid-crust low S velocities from previous studies suggests the possible presence of fluid or partial melt in the two regions, which may have implications for the crustal flow model. In contrast, the Lhasa block had relatively lower crustal vP/vS and relatively higher crustal S velocity within the plateau, which is interpreted to be mechanically stronger than the Himalaya and Qiangtang blocks, and without mid-crust partial melt.


  • loading
  • Bao XW, Song XD, and Li JT (2015). High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet Sci Lett 417: 132–141. doi: 10.1016/j.jpgl.2015.02.024
    Cassidy JF (1992). Numerical experiments in broadband receiver function analysis. Bull Seismol Soc Am 82(3): 1453– 1474.
    Chen WP, Martin M, Tseng TL, Nowack RL, Hung SH, and Huang BS (2010). Shear-wave birefringence and current configuration of converging lithosphere under Tibet. Earth Planet Sci Lett 295(1-2): 297–304. doi: 10.1016/j.jpgl.2010.04.017
    Clark MK, and Royden LH (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 28(8): 703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
    Deng YF, Li JT, Song XD, and Zhu LP (2018). Joint inversion for lithospheric structures: Implications for the growth and deformation in Northeastern Tibetan Plateau. Geophys Res Lett 45(9): 3951 – 3958 . doi: 10.1029/2018GL077486
    Deng YF, Li JT, Peng TP, Ma Q, Song XD, Sun XL, Shen YS, and Fan WM (2019). Lithospheric structure in the Cathaysia block (South China) and its implication for the late Mesozoic magmatism. Phys Earth Planet Inter 291: 24–34. doi: 10.1016/j.pepi.2019.04.003
    Duputel Z, Vergne J, Rivera L, Wittlinger G, Farra V, and Hetényi G (2016). The 2015 Gorkha earthquake: a large event illuminating the Main Himalayan Thrust fault. Geophys Res Lett 43(6): 2517 – 2525 . doi: 10.1002/2016GL068083
    England P, and Houseman G (1986). Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. J Geophys: Res Solid Earth 91(B3): 3664 –3676. doi: 10.1029/JB091iB03p03664
    Frederiksen AW, and Bostock MG (2000). Modelling teleseismic waves in dipping anisotropic structures. Geophys J Int 141(2): 401–412. doi: 10.1046/j.1365-246x.2000.00090.x
    Huang SY, Yao HJ, Lu ZW, Tian XB, Zheng Y, Wang R, Luo S, and Feng JK (2020). High-resolution 3-D shear wave velocity model of the Tibetan Plateau: Implications for crustal deformation and porphyry Cu deposit formation. J Geophys Res: Solid Earth 125(7): e2019JB019215.
    Klemperer SL (2006). Crustal flow in Tibet: a review of geophysical evidence for the physical state of Tibetan lithosphere. In: Searle MP, and Law RD (Eds) Channel Flow, Ductile Extrusion and Exhumation of Lower Mid-crust in Continental Collision Zones. Geol Soc Spec Publ 268: 39–70
    Levin V, and Park J (1997a). Crustal anisotropy in the Ural Mountains foredeep from teleseismic receiver functions. Geophys Res Lett 24(11): 1283 – 1286 . doi: 10.1029/97GL51321
    Levin V, and Park J (1997b). P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophys J Int 131(2): 253–266. doi: 10.1111/j.1365-246X.1997.tb01220.x
    Li JT, Song XD, Zhu LP, and Deng YF (2017). Joint inversion of surface wave dispersions and receiver functions with P velocity constraints: Application to Southeastern Tibet. J Geophys Res: Solid Earth 122(9): 7291 – 7310 . doi: 10.1002/2017JB014135
    Li JT, Song XD, Wang P, and Zhu LP (2019). A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions. J Geophys Res: Solid Earth 124(4): 3782 – 3801 . doi: 10.1029/2018JB016356
    Ligorria JP, and Ammon CJ (1999). Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am 89(5): 1395– 1400.
    Liu HF, and Niu FL (2012). Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophys J Int 188(1): 144–164. doi: 10.1111/j.1365-246X.2011.05249.x
    Molnar P, and Tapponnier P (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science 189(4201): 419–426. doi: 10.1126/science.189.4201.419
    Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su HP, Chen J, Huang BS, and The Hi-CLIMB Team (2009). Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325(5946): 1371 –1374. doi: 10.1126/science.1167719
    Nowack RL, Chen WP, and Tseng TL (2010). Application of Gaussian-beam migration to multiscale imaging of the lithosphere beneath the Hi-CLIMB array in Tibet. Bull Seismol Soc Am 100(4): 1743 – 1754 . doi: 10.1785/0120090207
    Owens TJ, and Zandt G (1997). Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387(6628): 37–43. doi: 10.1038/387037a0
    Powell CM (1986). Continental underplating model for the rise of the Tibetan Plateau. Earth Planet Sci Lett 81(1): 79–94. doi: 10.1016/0012-821X(86)90102-0
    Royden LH, Burchfiel BC, King RW, Wang E, Chen ZL, Shen F, and Liu YP (1997). Surface deformation and lower crustal flow in eastern Tibet. Science 276(5313): 788–790. doi: 10.1126/science.276.5313.788
    Royden LH, Burchfiel BC, and van der Hilst RD (2008). The geological evolution of the Tibetan Plateau. Science 321(5892): 1054 – 1058 . doi: 10.1126/science.1155371
    Rümpker G, Kaviani A, and Latifi K (2014). Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping. Geophys J Int 199(1): 146–163. doi: 10.1093/gji/ggu154
    Savage MK (1998). Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. J Geophys Res: Solid Earth 103(B7): 15069 –15087. doi: 10.1029/98JB00795
    Shang XF, de Hoop MV, and van der Hilst RD (2017). Common conversion point stacking of receiver functions versus passive-source reverse time migration and wavefield regularization. Geophys J Int 209(2): 923–934. doi: 10.1093/gji/ggx069
    Sun XL, Song XD, Zheng SH, Yang YJ, and Ritzwoller MH (2010). Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthq Sci 23(5): 449–463. doi: 10.1007/s11589-010-0744-4
    Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, and Yang JS (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science 294(5547): 1671 – 1677 . doi: 10.1126/science.105978
    Tseng TL, Chen WP, and Nowack RL (2009). Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys Res Lett 36(24): L24304. doi: 10.1029/2009GL040457
    Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn SG, Spratt JE, and The INDEPTH-MT Team (2005). Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438(7064): 78–81. doi: 10.1038/nature04154
    Wessel P, and Smith WHF (1998). New, improved version of generic mapping tools released. Eos 79(47): 579–579. doi: 10.1029/98EO00426
    Wittlinger G, Farra V, Hetényi G, Vergne J, and Nábělek J (2009). Seismic velocities in Southern Tibet lower crust: a receiver function approach for eclogite detection. Geophys J Int 177(3): 1037 – 1049 . doi: 10.1111/j.1365-246X.2008.04084.x
    Xu Q, Zhao JM, Pei SP, and Liu HB (2011). The lithosphere-asthenosphere boundary revealed by S-receiver functions from the Hi-CLIMB experiment. Geophys J Int 187(1): 414–420. doi: 10.1111/j.1365-246X.2011.05154.x
    Xu ZJ, Song XD, and Zhu LP (2013a). Crustal and uppermost mantle S velocity structure under Hi-CLIMB seismic array in central Tibetan Plateau from joint inversion of surface wave dispersion and receiver function data. Tectonophysics 584: 209–220. doi: 10.1016/j.tecto.2012.08.024
    Xu ZJ, Song XD, and Zheng SH (2013b). Shear velocity structure of crust and uppermost mantle in China from surface wave tomography using ambient noise and earthquake data. Earthq Sci 26(5): 267–281. doi: 10.1007/s11589-013-0010-7
    Yang YJ, Ritzwoller MH, Zheng Y, Shen WS, Levshin AL, and Xie ZJ (2012). A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J Geophys Res: Solid Earth 117(B4): B04303.
    Ye Z, Li JT, Gao R, Song XD, Li QS, Li YK, Xu X, Huang XF, Xiong XS, and Li WH (2017). Crustal and uppermost mantle structure across the Tibet-Qinling transition zone in NE Tibet: Implications for material extrusion beneath the Tibetan plateau. Geophys Res Lett 44(20): 10316 – 10323 . doi: 10.1002/2017GL075141
    Ye Z, Li QS, Zhang HS, Li JT, Wang XR, Han RB, and Wu QY (2019). Crustal and uppermost mantle structure across the Lower Yangtze region and its implications for the late Mesozoic magmatism and metallogenesis, eastern South China. Phys Earth Planet Inter 297: 106324 . doi: 10.1016/j.pepi.2019.106324
    Yin A, and Harrison TM (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28: 211–280. doi: 10.1146/annurev.earth.28.1.211
    Yuan XH, Ni J, Kind R, Mechie J, and Sandvol E (1997). Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J Geophys Res: Solid Earth 102(B2): 27491– 27500.
    Zhang BF, Bao XW, and Xu YX (2020). Distinct orogenic processes in the South- and North-Central Tien Shan from receiver functions. Geophys Res Lett 47(6): e2019GL086941.
    Zhang PZ, Shen ZK, Wang M, Gan WJ, Bürgmann R, Molnar P, Wang Q, Niu ZJ, Sun JZ, Wu JC, Sun HR, and You XZ (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32(9): 809–812. doi: 10.1130/G20554.1
    Zhou YM (2013). Crustal structure of the Tibetan Plateau and its surroundings from receiver function studies. Dissertation, Saint Louis University
    Zhu LP, and Kanamori H (2000). Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res: Solid Earth 105(B2): 2969 – 2980 . doi: 10.1029/1999JB900322
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article Views(1173) PDF Downloads(102) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint