Current Article

2022, Volume 35,  Issue 3

Display Method:
Investigation on variations of apparent stress in the region in and around the rupture volume preceding the occurrence of the 2021 Alaska MW8.2 earthquake
Xuezhong Chen, Yane Li, Lijuan Chen
2022, 35(3): 147-160. doi: 10.1016/j.eqs.2022.06.002
On July 29, 2021, a large earthquake of MW8.2 occurred south of the Alaska Peninsula. To investigate the spatial-temporal changes of crustal stress in the earthquake-stricken area before this event, we selected 159 earthquakes of 4.7 ≤ MW ≤ 6.9 that occurred in the epicentral region and its surroundings between January 1980 and June 2021 to study the temporal variation and spatial distribution of their apparent stress. In addition, we analyzed the correlation between seismic activities and Earth’s rotation and explored the seismogenic process of this earthquake. The crustal stress rose from January 2008 to December 2016. This period was followed by a sub-instability stage from January 2017 until the occurrence of the MW8.2 earthquake. The average rate of apparent stress change in the first five years of the stress increase period was roughly 2.3 times that in the last four years. The lateral distribution of the apparent stress shows that the areas with apparent stress greater than 1.0 MPa exhibited an expanding trend during the seismogenic process. The maximum apparent stress was located at the earthquake epicenter during the last four years. The distribution of the apparent stress in the E-W vertical cross section revealed that an apparent stress gap formed around the hypocenter during the first five years of the stress increase period, surrounded by areas of relatively high apparent stress. After the Alaska earthquake, most parts of this gap were filled in by aftershocks. The seismic activities during the sub-instability stage exhibited a significant correlation with Earth’s rotation.
A comparative study of seismic tomography models of the Chinese continental lithosphere
Xuezhen Zhang, Xiaodong Song, Jiangtao Li
2022, 35(3): 161-185. doi: 10.1016/j.eqs.2022.05.005
The Chinese mainland is subject to complicated plate interactions that give rise to its complex structure and tectonics. While several seismic velocity models have been developed for the Chinese mainland, apparent discrepancies exist and, so far, little effort has been made to evaluate their reliability and consistency. Such evaluations are important not only for the application and interpretation of model results but also for future model improvement. To address this problem, here we compare five published shear-wave velocity models with a focus on model consistency. The five models were derived from different datasets and methods (i.e., body waves, surface waves from earthquakes, surface waves from noise interferometry, and full waves) and interpolated into uniform horizontal grids (0.5° × 0.5°) with vertical sampling points at 5 km, 10 km, and then 20 km intervals to a depth of 160 km below the surface, from which we constructed an averaged model (AM) as a common reference for comparative study. We compare both the absolute velocity values and perturbation patterns of these models. Our comparisons show that the models have large (> 4%) differences in absolute values, and these differences are independent of data coverage and model resolution. The perturbation patterns of the models also show large differences, although some of the models show a high degree of consistency within certain depth ranges. The observed inconsistencies may reflect limited model resolution but, more importantly, systematic differences in the datasets and methods employed. Thus, despite several seismic models being published for this region, there is significant room for improvement. In particular, the inconsistencies in both data and methodologies need to be resolved in future research. Finally, we constructed a merged model (ChinaM-S1.0) that incorporates the more robust features of the five published models. As the existing models are constrained by different datasets and methods, the merged model serves as a new type of reference model that incorporates the common features from the joint datasets and methods for the shear-wave velocity structure of the Chinese mainland lithosphere.
Emergence of non-extensive seismic magnitude-frequency distribution from a Bayesian framework
Ewin Sánchez
2022, 35(3): 186-192. doi: 10.1016/j.eqs.2022.06.004
Non-extensive statistical mechanics has been used in recent years as a framework in order to build some seismic frequency-magnitude models. Following a Bayesian procedure through a process of marginalization, it is shown that some of these models can arise from the result shown here, which reinforces the relevance of the non-extensive distributions to explain the data (earthquake’s magnitude) observed during the seismic manifestation. In addition, it makes possible to extend the non-extensive family of distributions, which could explain cases that, eventually, could not be covered by the currently known distributions within this framework. The model obtained was applied to six data samples, corresponding to the frequency-magnitude distributions observed before and after the three strongest earthquakes registered in Chile during the late millennium. In all cases, fit parameters show a strong trend to a particular non-extensive model widely known in literature.
Gorkha earthquake (MW7.8) and aftershock sequence: A fractal approach
Ram Krishna Tiwari, Harihar Paudyal
2022, 35(3): 193-204. doi: 10.1016/j.eqs.2022.06.001
On April 25, 2015, Nepal was struck by the MW7.8 Gorkha earthquake followed by an intense aftershock sequence. It was one of the most destructive earthquakes in the Himalayan arc, causing more than 8900 fatalities. In this study, we analyzed the dataset (429 events, magnitude of completeness (Mc) ≥ 4.2 local magnitude) of the first 45 days after the Gorkha earthquake to estimate the seismicity parameters b-value, D-value, and p-value. We used the maximum likelihood method to estimate the b-value and Omori-Utsu parameters, whereas the correlation integral method was applied to estimate the fractal dimension (D-value). The analysis was carried out using running and sliding window techniques. The lowest b-value (0.57 ± 0.04) and the highest D-value (1.65 ± 0.02) were computed at the time of the Gorkha earthquake, after which the b-value significantly increased to a maximum of 1.57. It again dropped to 0.93 at the time of the major aftershock on May 12, 2015. The D-value showed an initial quick drop and then decreased in a wavy pattern until the end of the study period, indicating the clustering and scattering of earthquakes in a fault region. The b-value contour map identified the eastern part of the study area as a high stress region (b = ~0.8), implying that the stress shifted to that region. The D-value contour map reveals that the seismogenic structure shifted from linear to planar in the region. The rate of aftershock decay (p = 0.86 ± 0.04) for a short period reflects that the level of stress decreased rapidly. This study helps to understand the level of stress and seismicity pattern of a region, which could be useful for aftershock studies.
Rapid Communication
Correlation between the tilt anomaly on the vertical pendulum at the Songpan station and the 2021 MS7.4 Maduo earthquake in Qinghai province, China
Anfu Niu, Zhengyi Yuan, Jin Wei, Jing Zhao, Wei Yan
2022, 35(3): 205-212. doi: 10.1016/j.eqs.2022.06.003
Understanding the relationship between precursory deformation anomalies and strong earthquakes is vital for physical earthquake prediction. Six months before the 2021 MS7.4 Maduo earthquake in Qinghai province, China, the vertical pendulum at the Songpan station was observed to tilt southward with a high rate and large amplitude. Studies conducted before the 2021 MS7.4 Maduo earthquake inferred the tilt anomaly to be an earthquake precursor. However, after the earthquake, the relation between the earthquake and the anomaly became controversial, partly because the Songpan station is located at a great distance from the epicenter. In this study, based on the deformation anomaly characteristics, relationship between the seismogenic fault and the fault near the anomaly, and associated quantitative analyses, we concluded that this anomaly may be associated with the 2021 MS7.4 Maduo earthquake. The duration and amplitude of this anomaly matched with the magnitude and epicenter distance of the Maduo earthquake. We have also interpreted the reason why the anomaly occurred near a fault that is obliquely intersected with the seismogenic fault and why the anomaly is located far from the earthquake epicenter.