X
Advanced Search
Xiao Zhang, Dinghui Yang, Guojie Song (2014). A nearly analytic exponential time difference method for solving 2D seismic wave equations. Earthq Sci 27(1): 57-77. DOI: 10.1007/s11589-013-0056-6
Citation: Xiao Zhang, Dinghui Yang, Guojie Song (2014). A nearly analytic exponential time difference method for solving 2D seismic wave equations. Earthq Sci 27(1): 57-77. DOI: 10.1007/s11589-013-0056-6

A nearly analytic exponential time difference method for solving 2D seismic wave equations

More Information
  • Corresponding author:

    D. Yang, e-mail: dhyang@math.tsinghua.edu.cn

  • Received Date: 23 Jul 2013
  • Accepted Date: 15 Dec 2013
  • Available Online: 30 May 2022
  • Published Date: 21 Jan 2014
Chinese summary

  • In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approximate the high-order spatial differential operators and transform the seismic wave equations into semi-discrete ordinary differential equations (ODEs). Then, the converted ODE system is solved by the exponential time difference (ETD) method. We investigate the properties of NETD in detail, including the stability condition for 1-D and 2-D cases, the theoretical and relative errors, the numerical dispersion relation for the 2-D acoustic case, and the computational efficiency. In order to further validate the method, we apply it to simulating acoustic/elastic wave propagation in multilayer models which have strong contrasts and complex heterogeneous media, e.g., the SEG model and the Marmousi model. From our theoretical analyses and numerical results, the NETD can suppress numerical dispersion effectively by using the displacement and gradient to approximate the high-order spatial derivatives. In addition, because NETD is based on the structure of the Lie group method which preserves the quantitative properties of differential equations, it can achieve more accurate results than the classical methods.

  • loading
  • Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W H Freeman and Co, San Francisco http://opac.geotek.lipi.go.id/index.php?p=show_detail&id=2128
    Berg P, If F, Nielsen P, Skovgaard O (1993) Diffraction by a wedge in an acoustic constant density medium. Gephys Prospect 41:803-831 doi: 10.1111/gpr.1993.41.issue-7
    Blanch JO, Robertsson JOA (1997) A modified Lax-Wendroff correction for wave propagation in media described by Zener elements. Geophys J Int 131:381-386 doi: 10.1111/gji.1997.131.issue-2
    Booth DC, Crampin S (1983a) The anisotropic reflectivity technique: theory. Geophys J R Astron Soc 72:755-765 doi: 10.1111/j.1365-246X.1983.tb02831.x
    Booth DC, Crampin S (1983b) The anisotropic reflectivity technique: anomalous arrives from an anisotropic upper mantle. Geophys J R Astron Soc 72:767-782 doi: 10.1111/j.1365-246X.1983.tb02832.x
    Bouchon M (1996) The discrete wave number formulation of boundary integral equations and boundary element methods: a review with application to the simulations of seismic wave propagation in complex geological structures. Pure Appl Geophys 148(1-2):3-20 doi: 10.1007/BF00882052
    Carcione JM, Helle HB (1999) Numerical solution of the poroviscoelastic wave equation on a staggered mesh. J Comput Phys 154:520-527 doi: 10.1006/jcph.1999.6321
    Chen XF (1993) A systematic and efficient method of computing normal modes for multi-layered half-space. Geophys J Int 115:391-409 doi: 10.1111/gji.1993.115.issue-2
    Chen S, Yang DH, Deng XY (2010) A weighted Runge-Kutta method with weak numerical dispersion for solving wave equations. Commun Comput Phys 7(5):1027-1048 http://or.nsfc.gov.cn/handle/00001903-5/50505
    Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J Comput Phys 176:430-455 doi: 10.1006/jcph.2002.6995
    Dablain MA (1986) The application of high-order differencing to the scalar wave equation. Geophysics 51:54-66 doi: 10.1190/1.1442040
    Dimitri K, Jeroen T (2003) A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys J Int 154:146-153 doi: 10.1046/j.1365-246X.2003.01950.x
    Dumbser M, Kaser M, Toro E (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and p-adaptivity. Geophys J Int 171:695-717 doi: 10.1111/gji.2007.171.issue-2
    Eriksson K, Johnson C (1991) Adaptive finite element methods for parabolic problems Ⅰ: a linear model problem. SIAM J Numer Anal 28:43-77 doi: 10.1137/0728003
    Fei T, Larner K (1995) Elimination of numerical dispersion in finite difference modeling and migration by flux-corrected transport. Geophysics 60:1830-1842 doi: 10.1190/1.1443915
    Frank DH, Jhon BS, Shira LB (1996) Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J Acoust Soc Am 100(5):3061-3069 doi: 10.1121/1.417118
    Igel H, Mora P, Riollet B (1995) Anisotropic wave propagation through finite-difference grids. Geophysics 60:1203-1216 doi: 10.1190/1.1443849
    Iserles A, Munthe-Kaas H, Norsett SP, Zanna A (2000) Lie group methods. Acta Numer 9:215-365 doi: 10.1017/S0962492900002154
    Kelly KR, Wave RW, Tretel S (1976) Synthetic seismograms: a finite-difference approach. Geophysics 41:2-27 doi: 10.1190/1.1440605
    Komatitsch D, Vilotte JP (1998) The spectral element method: an efficient tool to simulate the seismic responses of 2-D and 3-D geological structures. Bull Seismol Soc Am 88:368-392 https://www.researchgate.net/publication/232707622_The_Spectral_Element_method_an_efficient_tool_to_simulate_the_seismic_response_of_2D_and_3D_geological_structures
    Komatitsch D, Barnes C, Tromp J (2000) Simulation of anisotropic wave propagation based upon a spectral-element method. Geophysics 65:1251-1260 doi: 10.1190/1.1444816
    Kosloff D, Baysal E (1982) Forward modeling by a Fourier method. Geophysics 47:1402-1412 doi: 10.1190/1.1441288
    Krogstad S (2005) Generalized integrating factor methods for stiff PDEs. J Comput Phys 203:72-88 doi: 10.1016/j.jcp.2004.08.006
    Li J, Tang G, Hu T (2010) Optimization of a precise integration method for seismic modeling based on graphic processing unit. Earthq Sci 23:387-393 doi: 10.1007/s11589-010-0736-4
    Ma X, Yang DH, Liu FQ (2011) A nearly-analytic symplectically partitioned Runge-Kutta method for 2-D seismic wave equations. Geophys J Int 187:480-496 doi: 10.1111/gji.2011.187.issue-1
    Minchev BV (2003) Exponential time differencing and Lie-group methods for stiff problems. In: The international conference on scientific computation and differential equations, Trondheim, June 30-July 4, 2003
    Moszo P, Kristek J, Halada L (2000) 3-D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion. Bull Seismol Soc Am 90(3):587-603 doi: 10.1785/0119990119
    Munthe-Kaas H (1999) High order Runge-Kutta methods on manifolds. Appl Numer Math 29:115-227 doi: 10.1016/S0168-9274(98)00030-0
    Munthe-Kaas H, Zanna A (1997) Numerical integration of differential equations on homogeneous manifolds. http://hans.munthe-kaas.no/work/Blog/Entries/1997/1/1_Article_Numerical_integration_of_differential_equations_on_homogeneous_manifolds_files/munthe-kaas97nio.pdf. Accessed 15 May, 2013
    Sun JQ, Qin MZ, Dai GD (2008) Exponential time difference method to solve the diffusion equation. J Numer Methods Comput Appl 29(4):261-266 http://www.unc.edu/math/Faculty/met/odechap3.pdf
    Tang G, Hu T, Yang J (2007) Applications of a precise integration method in forward seismic modeling. In: The 77th SEG annual international meeting. Expanded abstract, 2130-2134
    Tong P, Yang DH, Hua BL (2011) High accuracy wave simulation—revised derivation, numerical analysis and testing of a nearly analytic integration discrete method for solving acoustic equation. Int J Solids Struct 48:56-70 doi: 10.1016/j.ijsolstr.2010.09.003
    Versteeg RJ, Grau G (1991) The Marmousi experience. In: Proceedings of the EAGE workshop on practical aspects of seismic data inversion (Copenhagen, 1990), European Association of Exploration Geophysicists, Zeist
    Yang DH, Teng JW, Zhang ZJ et al (2003) A nearly-analytic discrete method for acoustic and elastic wave equation. Bull Seismol Soc Am 93(2):882-890 doi: 10.1785/0120020125
    Yang DH, Lu M, Wu RS, Peng JM (2004) An optimal nearly-analytic discrete method for 2-D acoustic and elastic wave equations. Bull Seismol Soc Am 94:1982-1991 doi: 10.1785/012003155
    Yang DH, Peng JM, Lu M, Tamas T (2006) Optimal nearly analytic discrete approximation to the scalar wave equation. Bull Seismol Soc Am 96:1114-1130 doi: 10.1785/0120050080
    Yang DH, Song GJ, Chen S et al (2007) An improved nearly analytical discrete method: an efficient tool to simulate the seismic response of 2 D porous structures. J Geophys Eng 4:40-52 doi: 10.1088/1742-2132/4/1/006
    Zhou H, Chen XF (2008) The localized boundary integral equation discrete wave-number method for simulating P-SV wave scattering by an irregular topography. Bull Seismol Soc Am 98:265-279 doi: 10.1785/0120060249

Catalog

    Guojie Song

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(24)  /  Tables(2)

    Article views (398) PDF downloads (2) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return