A note on the equivalence of three major propagator algorithms for computational stability and efficiency
-
Graphical Abstract
-
Abstract
It is shown in this note that the three methods, the orthonormalization method, the minor matrix method and the recursive reflection-transmission matrix method are closely related and solve the numerical instability in the original Thomson-Haskell propagator matrix method equally well. Another stable and efficient method based on the orthonormalization and the Langer block-diagonal decomposition is presented to calculate the response of a horizontal stratified model to a plane, spectral wave. It is a numerically robust Thomson-Haskell matrix method for high frequencies, large layer thicknesses and horizontal slownesses. The technique is applied to calculate reflection-transmission coefficients, body wave receiver functions and Rayleigh wave dispersion.
-
-