• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Application and performance evaluation of the waveform stacking-based microseismic location method in the southern Sichuan Basin of China

  • Abstract: Seismic source locations can characterize the spatial and temporal distributions of seismic sources, and can provide important basic data for earthquake disaster monitoring, fault activity characterization, and fracture growth interpretation. Waveform stacking-based location methods invert the source locations by focusing the source energy with multichannel waveforms, and these methods exhibit a high level of automation and noise-resistance. Taking the cross-correlation stacking (CCS) method as an example, this work attempts to study the influential factors and performance evaluation of waveform stacking-based methods, and introduces a comprehensive performance evaluation scheme based on multiple parameters and indicators. The waveform data are from field monitoring of induced microseismicity in the Changning region (southern Sichuan Basin of China). Synthetic and field data tests reveal the impacts of three categories of factors on waveform stacking-based location: velocity model, monitoring array, and waveform complexity. The location performance is evaluated and further improved in terms of the source imaging resolution and location error. Denser array monitoring contributes to better constraining source depth and location reliability, but the combined impact of multiple factors, such as velocity model uncertainty and multiple seismic phases, increases the complexity of locating field microseismic events. Finally, the aspects of location uncertainty, phase detection, and artificial intelligence-based location are discussed.

     

/

返回文章
返回